Strategic Overview for Executives & Technical Leaders
Transforming Raw Data into Competitive Advantage
Metrics That Drive Strategic Growth
Understanding Customer Psychology Through Advanced Analytics
Regression Analysis Approach: Identify the key factors that drive initial customer interest and engagement with your brand. This analysis reveals which touchpoints, content types, and channels generate the highest engagement rates.
Decision Tree Analysis: Visual mapping of the conversion journey helps identify critical decision points and optimize the path to purchase. This analysis provides actionable insights for improving conversion funnels.
Causal Analysis: Understanding the root causes of customer churn enables proactive retention strategies. This analysis identifies early warning signals and intervention opportunities.
Leveraging Time-Series Analytics for Strategic Advantage
Real-Time Brand Perception and Customer Insight Management
Scaling Creative Excellence Through Artificial Intelligence
Building Sustainable Competitive Advantage
Practical ML & GenAI Solutions for Marketing Teams
Building Robust Data Pipelines for Marketing Analytics
# Example: Real-time customer event processing
import kafka
from kafka import KafkaConsumer
import json
import pandas as pd
def process_customer_events():
consumer = KafkaConsumer(
'customer_events',
bootstrap_servers=['localhost:9092'],
value_deserializer=lambda x: json.loads(x.decode('utf-8'))
)
for message in consumer:
event_data = message.value
# Process event for real-time personalization
customer_profile = update_customer_profile(event_data)
trigger_marketing_automation(customer_profile)
Advanced Machine Learning Models for Customer Behavior Analysis
Implement binary classification models to predict customer engagement likelihood using features like browsing history, demographic data, and interaction patterns.
# Engagement prediction model
from sklearn.linear_model import LogisticRegression
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
# Feature engineering for engagement prediction
def build_engagement_model(data):
features = ['page_views', 'session_duration', 'email_opens',
'social_interactions', 'device_type_encoded']
X = data[features]
y = data['engaged']
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
model = LogisticRegression(random_state=42)
model.fit(X_scaled, y)
return model, scaler
Build interpretable decision tree models using Random Forest or XGBoost to understand the path to conversion and identify key decision points in the customer journey.
# Conversion decision tree implementation
from sklearn.ensemble import RandomForestClassifier
import xgboost as xgb
from sklearn.tree import export_text
def build_conversion_model(data):
features = ['engagement_score', 'price_sensitivity', 'product_affinity',
'channel_preference', 'purchase_history']
X = data[features]
y = data['converted']
# Random Forest for interpretability
rf_model = RandomForestClassifier(n_estimators=100, max_depth=10)
rf_model.fit(X, y)
# XGBoost for performance
xgb_model = xgb.XGBClassifier()
xgb_model.fit(X, y)
return rf_model, xgb_model
Implement survival analysis and causal inference models using libraries like lifelines and DoWhy to identify churn causes and intervention points.
# Churn prediction with survival analysis
from lifelines import CoxPHFitter
from lifelines import KaplanMeierFitter
import dowhy
def build_churn_model(data):
# Survival analysis for time-to-churn
cph = CoxPHFitter()
cph.fit(data, duration_col='days_to_churn', event_col='churned')
# Causal analysis for intervention strategies
causal_graph = """
digraph {
satisfaction -> churn;
support_interactions -> churn;
product_usage -> churn;
satisfaction -> product_usage;
}
"""
model = dowhy.CausalModel(data, causal_graph=causal_graph,
treatment='support_interactions',
outcome='churn')
return cph, model
Advanced Forecasting and Seasonality Detection
# Comprehensive time series analysis pipeline
import pandas as pd
import numpy as np
from prophet import Prophet
from statsmodels.tsa.arima.model import ARIMA
from statsmodels.tsa.seasonal import seasonal_decompose
import matplotlib.pyplot as plt
class MarketingTimeSeriesAnalyzer:
def __init__(self, data):
self.data = data
self.models = {}
def detect_seasonality(self, column):
"""Detect seasonal patterns in marketing data"""
decomposition = seasonal_decompose(
self.data[column],
model='multiplicative',
period=12
)
return decomposition
def build_prophet_model(self, column, holidays_df=None):
"""Build Prophet model with marketing-specific considerations"""
df = self.data.reset_index()
df.columns = ['ds', 'y']
model = Prophet(
changepoint_prior_scale=0.05,
seasonality_prior_scale=10,
holidays_prior_scale=10,
daily_seasonality=False,
weekly_seasonality=True,
yearly_seasonality=True
)
if holidays_df is not None:
model.add_country_holidays(country_name='US')
model.fit(df)
self.models['prophet'] = model
return model
def forecast_with_confidence(self, periods=30):
"""Generate forecasts with confidence intervals"""
future = self.models['prophet'].make_future_dataframe(periods=periods)
forecast = self.models['prophet'].predict(future)
return forecast[['ds', 'yhat', 'yhat_lower', 'yhat_upper']]
NLP Pipeline with Real-Time Processing and Geospatial Analysis
# Production sentiment analysis pipeline
import pandas as pd
import numpy as np
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification
import spacy
from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer
import redis
import geopandas as gpd
from sklearn.cluster import DBSCAN
class ProductionSentimentAnalyzer:
def __init__(self):
# Load pre-trained models
self.bert_analyzer = pipeline(
"sentiment-analysis",
model="cardiffnlp/twitter-roberta-base-sentiment-latest"
)
self.vader_analyzer = SentimentIntensityAnalyzer()
self.nlp = spacy.load("en_core_web_sm")
self.redis_client = redis.Redis(host='localhost', port=6379, db=0)
def preprocess_text(self, text):
"""Advanced text preprocessing for marketing content"""
doc = self.nlp(text)
# Remove noise, normalize, handle negations
tokens = []
for token in doc:
if not token.is_stop and not token.is_punct and token.is_alpha:
tokens.append(token.lemma_.lower())
return " ".join(tokens)
def analyze_sentiment_ensemble(self, text):
"""Multi-model sentiment analysis with confidence scoring"""
preprocessed = self.preprocess_text(text)
# BERT-based analysis
bert_result = self.bert_analyzer(preprocessed)[0]
# VADER analysis
vader_scores = self.vader_analyzer.polarity_scores(text)
# Ensemble scoring
final_score = (bert_result['score'] * 0.7 +
abs(vader_scores['compound']) * 0.3)
return {
'sentiment': bert_result['label'],
'confidence': final_score,
'compound_score': vader_scores['compound']
}
def geospatial_sentiment_clustering(self, sentiment_data_with_coords):
"""Cluster sentiment data geographically"""
coords = np.array([(row['lat'], row['lon'])
for _, row in sentiment_data_with_coords.iterrows()])
# DBSCAN clustering for geographical sentiment hotspots
clustering = DBSCAN(eps=0.01, min_samples=5).fit(coords)
sentiment_data_with_coords['cluster'] = clustering.labels_
return sentiment_data_with_coords
Statistical Rigor and Machine Learning Model Comparison
# Advanced A/B testing framework with ML model comparison
import numpy as np
import pandas as pd
from scipy import stats
from sklearn.ensemble import RandomForestClassifier
import xgboost as xgb
from sklearn.neural_network import MLPClassifier
from sklearn.model_selection import cross_val_score, StratifiedKFold
from sklearn.metrics import roc_auc_score, precision_recall_curve
import mlflow
import mlflow.sklearn
class MLModelABTester:
def __init__(self, experiment_name):
self.experiment_name = experiment_name
mlflow.set_experiment(experiment_name)
self.models = {
'random_forest': RandomForestClassifier(n_estimators=100, random_state=42),
'xgboost': xgb.XGBClassifier(random_state=42),
'neural_network': MLPClassifier(hidden_layer_sizes=(100, 50), random_state=42)
}
def calculate_sample_size(self, baseline_rate, minimum_effect, alpha=0.05, power=0.8):
"""Calculate required sample size for A/B test"""
from statsmodels.stats.power import ttest_power
effect_size = minimum_effect / np.sqrt(baseline_rate * (1 - baseline_rate))
n = ttest_power(effect_size, power, alpha, alternative='two-sided')
return int(n * 2) # For two groups
def compare_models(self, X, y, cv_folds=5):
"""Compare multiple ML models with statistical significance testing"""
results = {}
with mlflow.start_run(run_name="model_comparison"):
cv = StratifiedKFold(n_splits=cv_folds, shuffle=True, random_state=42)
for model_name, model in self.models.items():
with mlflow.start_run(run_name=model_name, nested=True):
# Cross-validation scores
cv_scores = cross_val_score(model, X, y, cv=cv, scoring='roc_auc')
# Train final model for feature importance
model.fit(X, y)
y_pred_proba = model.predict_proba(X)[:, 1]
auc_score = roc_auc_score(y, y_pred_proba)
results[model_name] = {
'cv_scores': cv_scores,
'mean_auc': cv_scores.mean(),
'std_auc': cv_scores.std(),
'final_auc': auc_score
}
# Log metrics to MLflow
mlflow.log_metrics({
'mean_cv_auc': cv_scores.mean(),
'std_cv_auc': cv_scores.std(),
'final_auc': auc_score
})
# Log model
mlflow.sklearn.log_model(model, f"{model_name}_model")
return self.statistical_significance_test(results)
def statistical_significance_test(self, results):
"""Perform pairwise statistical significance testing"""
model_names = list(results.keys())
significance_matrix = pd.DataFrame(index=model_names, columns=model_names)
for i, model1 in enumerate(model_names):
for j, model2 in enumerate(model_names):
if i != j:
scores1 = results[model1]['cv_scores']
scores2 = results[model2]['cv_scores']
t_stat, p_value = stats.ttest_rel(scores1, scores2)
significance_matrix.loc[model1, model2] = p_value
else:
significance_matrix.loc[model1, model2] = 1.0
return results, significance_matrix
Advanced Recommendation Systems for Personalized Marketing
# Advanced recommendation system implementation
import pandas as pd
import numpy as np
from mlxtend.frequent_patterns import apriori, association_rules
from sklearn.metrics.pairwise import cosine_similarity
from surprise import Dataset, Reader, SVD, KNNBasic
from surprise.model_selection import cross_validate
import redis
import pickle
class AdvancedRecommendationSystem:
def __init__(self):
self.redis_client = redis.Redis(host='localhost', port=6379, db=0)
self.models = {}
def market_basket_analysis(self, transactions_df):
"""Implement market basket analysis with association rules"""
# Convert transactions to basket format
basket = transactions_df.groupby(['transaction_id', 'product_id'])['quantity'].sum().unstack().fillna(0)
# Convert to binary matrix
basket_binary = basket.applymap(lambda x: 1 if x > 0 else 0)
# Find frequent itemsets
frequent_itemsets = apriori(basket_binary, min_support=0.01, use_colnames=True)
# Generate association rules
rules = association_rules(frequent_itemsets, metric="lift", min_threshold=1.0)
return frequent_itemsets, rules
def collaborative_filtering_svd(self, ratings_df):
"""Implement SVD-based collaborative filtering"""
reader = Reader(rating_scale=(1, 5))
data = Dataset.load_from_df(ratings_df[['user_id', 'item_id', 'rating']], reader)
# Train SVD model
svd_model = SVD(n_factors=100, random_state=42)
cross_validate(svd_model, data, measures=['RMSE', 'MAE'], cv=5, verbose=True)
# Train on full dataset
trainset = data.build_full_trainset()
svd_model.fit(trainset)
self.models['svd'] = svd_model
return svd_model
def user_based_collaborative_filtering(self, user_item_matrix):
"""Implement user-based collaborative filtering"""
# Calculate user similarity matrix
user_similarity = cosine_similarity(user_item_matrix)
user_similarity_df = pd.DataFrame(
user_similarity,
index=user_item_matrix.index,
columns=user_item_matrix.index
)
def get_user_recommendations(user_id, n_recommendations=10):
# Find similar users
similar_users = user_similarity_df[user_id].sort_values(ascending=False)[1:11]
# Get items rated by similar users but not by target user
user_items = set(user_item_matrix.loc[user_id][user_item_matrix.loc[user_id] > 0].index)
recommendations = {}
for similar_user, similarity_score in similar_users.items():
similar_user_items = user_item_matrix.loc[similar_user]
for item, rating in similar_user_items[similar_user_items > 0].items():
if item not in user_items:
if item not in recommendations:
recommendations[item] = 0
recommendations[item] += similarity_score * rating
return sorted(recommendations.items(), key=lambda x: x[1], reverse=True)[:n_recommendations]
return get_user_recommendations
def real_time_recommendation_cache(self, user_id, recommendations):
"""Cache recommendations in Redis for real-time serving"""
cache_key = f"recommendations:{user_id}"
self.redis_client.setex(
cache_key,
3600, # 1 hour expiry
pickle.dumps(recommendations)
)
def get_cached_recommendations(self, user_id):
"""Retrieve cached recommendations"""
cache_key = f"recommendations:{user_id}"
cached_data = self.redis_client.get(cache_key)
if cached_data:
return pickle.loads(cached_data)
return None
Production-Ready LLM Integration and RAG Systems
# Production-ready RAG system for marketing content generation
import openai
import pinecone
from langchain.embeddings import OpenAIEmbeddings
from langchain.vectorstores import Pinecone
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.chains import RetrievalQA
from langchain.llms import OpenAI
import pandas as pd
from typing import List, Dict
import re
class MarketingRAGSystem:
def __init__(self, pinecone_api_key, openai_api_key, index_name):
# Initialize connections
pinecone.init(api_key=pinecone_api_key, environment="us-west1-gcp")
openai.api_key = openai_api_key
self.embeddings = OpenAIEmbeddings()
self.index_name = index_name
self.vectorstore = None
# Brand voice configuration
self.brand_guidelines = {
'tone': 'professional yet approachable',
'voice': 'confident and helpful',
'keywords': ['innovative', 'reliable', 'customer-focused'],
'avoid_words': ['cheap', 'discount', 'basic']
}
def setup_knowledge_base(self, documents: List[str]):
"""Setup vector database with marketing knowledge"""
# Split documents into chunks
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1000,
chunk_overlap=200,
length_function=len
)
chunks = []
for doc in documents:
doc_chunks = text_splitter.split_text(doc)
chunks.extend(doc_chunks)
# Create vector store
self.vectorstore = Pinecone.from_texts(
chunks,
self.embeddings,
index_name=self.index_name
)
def generate_marketing_content(self, prompt: str, content_type: str) -> Dict:
"""Generate marketing content with RAG enhancement"""
# Retrieve relevant context
retriever = self.vectorstore.as_retriever(search_kwargs={"k": 3})
# Content-specific prompt templates
templates = {
'email': """
Create a marketing email with the following requirements:
- Subject line that drives opens
- Personalized greeting
- Clear value proposition
- Strong call-to-action
Context: {context}
Requirements: {prompt}
Brand Guidelines: {brand_guidelines}
""",
'social_media': """
Create engaging social media content:
- Platform-appropriate length
- Engaging hook
- Relevant hashtags
- Visual content suggestions
Context: {context}
Requirements: {prompt}
Brand Guidelines: {brand_guidelines}
""",
'product_description': """
Create compelling product descriptions:
- Key features and benefits
- Target audience appeal
- SEO-optimized content
- Conversion-focused language
Context: {context}
Product Details: {prompt}
Brand Guidelines: {brand_guidelines}
"""
}
# Build the QA chain
qa_chain = RetrievalQA.from_chain_type(
llm=OpenAI(temperature=0.7),
chain_type="stuff",
retriever=retriever,
return_source_documents=True
)
# Generate content
formatted_prompt = templates[content_type].format(
context="{context}",
prompt=prompt,
brand_guidelines=str(self.brand_guidelines)
)
result = qa_chain({"query": formatted_prompt})
# Content quality validation
quality_score = self.validate_content_quality(result['result'])
return {
'content': result['result'],
'quality_score': quality_score,
'source_documents': result['source_documents'],
'brand_compliance': self.check_brand_compliance(result['result'])
}
def validate_content_quality(self, content: str) -> float:
"""Validate generated content quality"""
quality_metrics = {
'length_appropriate': 0.2,
'readability': 0.3,
'brand_alignment': 0.3,
'call_to_action_present': 0.2
}
score = 0.0
# Length check
if 50 <= len(content.split()) <= 500:
score += quality_metrics['length_appropriate']
# CTA check
cta_patterns = [r'click here', r'shop now', r'learn more', r'get started', r'contact us']
if any(re.search(pattern, content.lower()) for pattern in cta_patterns):
score += quality_metrics['call_to_action_present']
# Brand keyword check
brand_keywords_present = sum(1 for keyword in self.brand_guidelines['keywords']
if keyword.lower() in content.lower())
score += (brand_keywords_present / len(self.brand_guidelines['keywords'])) * quality_metrics['brand_alignment']
return min(score, 1.0)
def check_brand_compliance(self, content: str) -> Dict:
"""Check content compliance with brand guidelines"""
compliance = {
'avoid_words_used': [],
'brand_keywords_included': [],
'tone_appropriate': True
}
# Check for avoided words
for word in self.brand_guidelines['avoid_words']:
if word.lower() in content.lower():
compliance['avoid_words_used'].append(word)
# Check for brand keywords
for keyword in self.brand_guidelines['keywords']:
if keyword.lower() in content.lower():
compliance['brand_keywords_included'].append(keyword)
return compliance
Production Deployment, Monitoring, and Continuous Learning
# MLOps pipeline for marketing AI deployment
import docker
import kubernetes
from kubernetes import client, config
import mlflow
import prometheus_client
from airflow import DAG
from airflow.operators.python_operator import PythonOperator
from datetime import datetime, timedelta
import joblib
import pandas as pd
class MarketingMLOps:
def __init__(self):
# Initialize MLflow tracking
mlflow.set_tracking_uri("http://mlflow-server:5000")
# Kubernetes configuration
config.load_incluster_config() # For in-cluster deployment
self.k8s_client = client.AppsV1Api()
# Prometheus metrics
self.model_predictions = prometheus_client.Counter(
'marketing_model_predictions_total',
'Total predictions made by marketing models',
['model_name', 'model_version']
)
self.model_latency = prometheus_client.Histogram(
'marketing_model_latency_seconds',
'Model prediction latency'
)
def deploy_model_to_kubernetes(self, model_name, model_version, image_tag):
"""Deploy ML model as Kubernetes deployment"""
deployment = {
"apiVersion": "apps/v1",
"kind": "Deployment",
"metadata": {"name": f"{model_name}-{model_version}"},
"spec": {
"replicas": 3,
"selector": {"matchLabels": {"app": model_name}},
"template": {
"metadata": {"labels": {"app": model_name}},
"spec": {
"containers": [{
"name": model_name,
"image": f"marketing-ml-models:{image_tag}",
"ports": [{"containerPort": 8080}],
"env": [
{"name": "MODEL_NAME", "value": model_name},
{"name": "MODEL_VERSION", "value": model_version}
],
"resources": {
"requests": {"cpu": "100m", "memory": "256Mi"},
"limits": {"cpu": "500m", "memory": "512Mi"}
},
"livenessProbe": {
"httpGet": {"path": "/health", "port": 8080},
"initialDelaySeconds": 30,
"periodSeconds": 10
}
}]
}
}
}
}
self.k8s_client.create_namespaced_deployment(
namespace="marketing-ml",
body=deployment
)
def create_model_monitoring_pipeline(self):
"""Create Airflow DAG for model monitoring and retraining"""
default_args = {
'owner': 'marketing-team',
'depends_on_past': False,
'start_date': datetime(2025, 1, 1),
'email_on_failure': True,
'email_on_retry': False,
'retries': 1,
'retry_delay': timedelta(minutes=5)
}
dag = DAG(
'marketing_model_monitoring',
default_args=default_args,
description='Monitor and retrain marketing ML models',
schedule_interval=timedelta(hours=6),
catchup=False
)
def check_data_drift():
"""Check for data drift in model inputs"""
# Load reference dataset
reference_data = pd.read_csv("reference_data.csv")
current_data = pd.read_csv("current_data.csv")
# Calculate drift metrics (using KS test as example)
from scipy.stats import ks_2samp
drift_detected = False
for column in reference_data.columns:
if reference_data[column].dtype in ['int64', 'float64']:
statistic, p_value = ks_2samp(
reference_data[column],
current_data[column]
)
if p_value < 0.05: # Significant drift detected
drift_detected = True
break
return drift_detected
def retrain_model_if_needed():
"""Retrain model if performance degradation detected"""
# Check model performance metrics
latest_metrics = mlflow.get_run(mlflow.search_runs().iloc[0].run_id).data.metrics
if latest_metrics.get('accuracy', 0) < 0.85: # Performance threshold
# Trigger retraining
from marketing_model_trainer import train_new_model
train_new_model()
# Define tasks
drift_check = PythonOperator(
task_id='check_data_drift',
python_callable=check_data_drift,
dag=dag
)
model_retrain = PythonOperator(
task_id='retrain_model_if_needed',
python_callable=retrain_model_if_needed,
dag=dag
)
# Set task dependencies
drift_check >> model_retrain
return dag
def implement_canary_deployment(self, model_name, new_version):
"""Implement canary deployment for model updates"""
# Deploy new version with limited traffic
canary_service = {
"apiVersion": "v1",
"kind": "Service",
"metadata": {"name": f"{model_name}-canary"},
"spec": {
"selector": {"app": model_name, "version": new_version},
"ports": [{"port": 80, "targetPort": 8080}],
"type": "ClusterIP"
}
}
# Istio VirtualService for traffic splitting
virtual_service = {
"apiVersion": "networking.istio.io/v1alpha3",
"kind": "VirtualService",
"metadata": {"name": f"{model_name}-vs"},
"spec": {
"hosts": [f"{model_name}.marketing-ml.svc.cluster.local"],
"http": [{
"match": [{"headers": {"canary": {"exact": "true"}}}],
"route": [{"destination": {"host": f"{model_name}-canary"}}]
}, {
"route": [{
"destination": {"host": f"{model_name}-stable"},
"weight": 90
}, {
"destination": {"host": f"{model_name}-canary"},
"weight": 10
}]
}]
}
}
return canary_service, virtual_service
Building Responsible and Secure Marketing AI Systems
# Comprehensive AI ethics and security implementation
import pandas as pd
import numpy as np
from fairlearn.metrics import demographic_parity_difference, equalized_odds_difference
from fairlearn.reductions import ExponentiatedGradient, DemographicParity
import shap
from cryptography.fernet import Fernet
import hashlib
from datetime import datetime, timedelta
import logging
class AIEthicsAndSecurity:
def __init__(self):
self.encryption_key = Fernet.generate_key()
self.cipher_suite = Fernet(self.encryption_key)
self.audit_log = []
# Setup logging for compliance
logging.basicConfig(
filename='ai_ethics_audit.log',
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s'
)
def implement_differential_privacy(self, data, epsilon=1.0):
"""Add differential privacy noise to protect individual privacy"""
sensitivity = 1.0 # Assuming normalized data
noise_scale = sensitivity / epsilon
# Add Laplace noise
noise = np.random.laplace(0, noise_scale, data.shape)
private_data = data + noise
self.log_privacy_action(f"Applied differential privacy with epsilon={epsilon}")
return private_data
def detect_and_mitigate_bias(self, X, y, sensitive_features, model):
"""Comprehensive bias detection and mitigation"""
# Train baseline model
model.fit(X, y)
y_pred = model.predict(X)
# Calculate bias metrics
dp_diff = demographic_parity_difference(
y_true=y,
y_pred=y_pred,
sensitive_features=sensitive_features
)
eo_diff = equalized_odds_difference(
y_true=y,
y_pred=y_pred,
sensitive_features=sensitive_features
)
bias_metrics = {
'demographic_parity_difference': dp_diff,
'equalized_odds_difference': eo_diff
}
# Mitigate bias if detected
if abs(dp_diff) > 0.1 or abs(eo_diff) > 0.1:
# Use ExponentiatedGradient for bias mitigation
constraint = DemographicParity()
mitigator = ExponentiatedGradient(model, constraint)
mitigator.fit(X, y, sensitive_features=sensitive_features)
y_pred_mitigated = mitigator.predict(X)
# Recalculate metrics
dp_diff_mitigated = demographic_parity_difference(
y_true=y,
y_pred=y_pred_mitigated,
sensitive_features=sensitive_features
)
bias_metrics['mitigated_demographic_parity'] = dp_diff_mitigated
self.log_bias_mitigation(bias_metrics)
return mitigator, bias_metrics
return model, bias_metrics
def generate_model_explanations(self, model, X_test, feature_names):
"""Generate SHAP explanations for model decisions"""
explainer = shap.Explainer(model)
shap_values = explainer(X_test)
# Generate summary
explanation_summary = {
'feature_importance': dict(zip(feature_names, np.abs(shap_values.values).mean(axis=0))),
'top_features': [feature_names[i] for i in np.argsort(np.abs(shap_values.values).mean(axis=0))[-5:]],
'explanation_quality_score': self.calculate_explanation_quality(shap_values)
}
self.log_explanation_generation(explanation_summary)
return shap_values, explanation_summary
def implement_gdpr_compliance(self, user_data, user_id, action):
"""Implement GDPR compliance mechanisms"""
compliance_actions = {
'consent_given': self.record_consent,
'consent_withdrawn': self.remove_consent,
'data_access_request': self.provide_data_access,
'data_deletion_request': self.delete_user_data,
'data_portability_request': self.export_user_data
}
if action in compliance_actions:
result = compliance_actions[action](user_data, user_id)
self.log_gdpr_action(user_id, action, result)
return result
else:
raise ValueError(f"Unknown GDPR action: {action}")
def anonymize_data(self, data, quasi_identifiers):
"""Implement k-anonymity for data anonymization"""
# Simple k-anonymity implementation
k = 5 # Minimum group size
# Group by quasi-identifiers
grouped = data.groupby(quasi_identifiers)
anonymized_data = []
for name, group in grouped:
if len(group) >= k:
anonymized_data.append(group)
else:
# Generalize or suppress small groups
generalized_group = self.generalize_quasi_identifiers(group, quasi_identifiers)
anonymized_data.append(generalized_group)
result = pd.concat(anonymized_data, ignore_index=True)
self.log_anonymization(len(data), len(result))
return result
def secure_model_storage(self, model, model_id):
"""Securely store ML models with encryption"""
import pickle
# Serialize model
model_bytes = pickle.dumps(model)
# Encrypt model
encrypted_model = self.cipher_suite.encrypt(model_bytes)
# Create integrity hash
model_hash = hashlib.sha256(model_bytes).hexdigest()
# Store with metadata
storage_metadata = {
'model_id': model_id,
'encrypted_model': encrypted_model,
'hash': model_hash,
'created_at': datetime.now().isoformat(),
'encryption_key_id': self.encryption_key[:16].hex() # Key identifier
}
self.log_secure_storage(model_id, model_hash)
return storage_metadata
def audit_ai_system(self, model, test_data, sensitive_features):
"""Comprehensive AI system audit"""
audit_results = {
'timestamp': datetime.now().isoformat(),
'model_performance': {},
'bias_metrics': {},
'privacy_compliance': {},
'security_assessment': {}
}
# Performance audit
predictions = model.predict(test_data)
audit_results['model_performance'] = {
'accuracy': (predictions == test_data['target']).mean(),
'prediction_distribution': np.bincount(predictions).tolist()
}
# Bias audit
_, bias_metrics = self.detect_and_mitigate_bias(
test_data.drop('target', axis=1),
test_data['target'],
sensitive_features,
model
)
audit_results['bias_metrics'] = bias_metrics
# Privacy audit
audit_results['privacy_compliance'] = {
'differential_privacy_enabled': True,
'data_minimization_score': self.calculate_data_minimization_score(test_data),
'consent_compliance': self.check_consent_compliance()
}
# Security assessment
audit_results['security_assessment'] = {
'model_encrypted': True,
'access_controls_enabled': True,
'audit_logging_active': True
}
self.log_system_audit(audit_results)
return audit_results
def log_privacy_action(self, action):
"""Log privacy-related actions for audit trail"""
log_entry = {
'timestamp': datetime.now().isoformat(),
'action_type': 'privacy',
'details': action
}
self.audit_log.append(log_entry)
logging.info(f"Privacy action: {action}")
def log_bias_mitigation(self, metrics):
"""Log bias mitigation actions"""
log_entry = {
'timestamp': datetime.now().isoformat(),
'action_type': 'bias_mitigation',
'metrics': metrics
}
self.audit_log.append(log_entry)
logging.info(f"Bias mitigation performed: {metrics}")
def log_gdpr_action(self, user_id, action, result):
"""Log GDPR compliance actions"""
log_entry = {
'timestamp': datetime.now().isoformat(),
'user_id': hashlib.sha256(str(user_id).encode()).hexdigest()[:16], # Anonymized user ID
'action': action,
'result': result
}
self.audit_log.append(log_entry)
logging.info(f"GDPR action {action} for user {user_id[:8]}...")